Seventh Grade Science: First Trimester Experimental Design

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.1 The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and conducting investigations in which	Standard 7.1 does not require a discrete unit on scientific investigation because the inquiry skills that make up the standard should be incorporated across the other 7th grade science standards.	Models/Simulations: <u>Reaction Time:</u> <u>Sound (with Historical</u> <u>Log)</u> The user should click	AIMS Magnificent Microworld Adventures
 a) data are organized into tables showing repeated trials and means; c) triple beam and electronic balances, thermometers, metric rulers, graduated cylinders, and probeware are used to gather data; 	Skills a, c, e, f, and g are placed at the beginning of year as an introductory unit in conducting scientific investigations. All other 7.1 process skills have been connected to	when they hear a sound, and watch for improvement on repeated trials.	<u>"The Enormous E",</u> The student will prepare a wet mount slide and measure the. field of view at various powers of
e) sources of experimental error are identified;	specific content within this curriculum guide, but teachers may also provide instruction in any of the skills throughout the school year.		magnification. "A Pretty Rotten
 f) dependent variables, independent variables, and constants are identified; g) variables are controlled to test 	In order to meet this standard, it is expected that students will:		Time", The student will observe structures that
hypotheses, and trials are repeated. The concepts developed in this standard include the	 make connections between the components of the nature of science and their investigations and the greater body of scientific knowledge and research. 		produce spores in bread mold and mushrooms.
 The concepts developed in this standard include the following: The nature of science refers to the foundational concepts that govern the way scientists formulate explanations about the natural world. The nature of science includes the following concepts a) the natural world is understandable; b) science is based on evidence - both observational and experimental; c) science is a blend of logic and innovation; 	 design a data table that includes space to organize all components of an investigation in a meaningful way including levels of the independent variable, measured responses of the dependent variable, number of trials, and mathematical means. develop and use a classification system that uses numerous attributes to organize information and discern patterns. 		STEM Activity: Greenhouse
 d) scientific ideas are durable yet subject to change as new data are collected; e) science is a complex social endeavor; and f) scientists try to remain objective and engage in 	 select and use appropriate tools and techniques for collecting qualitative and in classroom and field investigations. create and use mental and physical models 		
 peer review to help avoid bias. Expected results are reflected in the organization of the a data table, which includes areas to record the 	(including simulations) as ways to visualize explanations of ideas and phenomena.		
number of repeated trials, levels of the independent variable, measured results for the dependent variable, and analysis of the results by calculation of	 identify potential sources of error in the design of an experiment. evaluate the design of an experiment and the 		
the mathematical means.	• evaluate the design of an experiment and the events that occur during an investigation to		

MCPS Curriculum Guide

Cells

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.2 The student will investigate and understand that all living things are composed of cells. Key concepts include	In order to meet this standard, it is expected that students will:distinguish among the following: cell	Models/Simulations: Biologica Meiosis Explore meiosis	AIMS Magnificent Microworld Adventures.
 a) cell structure and organelles; b) similarities and differences between plant and animal cells; 	membrane, cytoplasm, nucleus, cell wall, vacuole, mitochondrion, endoplasmic reticulum, and chloroplast.	through gamete production and reproduction.	" <u>Onion Rings</u> ", The student will make a wet
 c) development of cell theory; and d) cell division. The concepts developed in this standard include the	 correlate the structures of cell organelles with their jobs functions and analyze how organelles perform particular jobs. 	<u>Biologica Dragon</u> <u>Genetics</u> Explore meiosis	mount slide of onion cells and observe cell walls, nucleus cytoplasm, and the cell membrane.
 following: The structure of a cell organelle is suited to the function carried out by that organelle. Division of labor 	• compare and contrast examples of plant and animal cells, using the light microscope and images obtained from other microscopes.	works by choosing different traits for each parent.	"The Green Machine",
within a cell is essential to the overall successful function of the cell.	 describe and sequence the major points in the development of the cell theory. identify the three components of the original 	<u>Tree of Life:</u> Phospholipids	The student will observe chloroplasts in a plant cell.
 Similarities and differences in plants and animals are evident at the cellular level. Plant and animal cells contain some of the same organelles and some that differ. 	 Identify the three components of the original cell theory. sequence the steps in the cell cycle, including the phases of mitosis. 	Explore a phospholipid, a lipid with a charged end.	" <u>The Cell as A Factory</u> ", The student will build a model of a cell to learn its
 The original cell theory includes the following components: all living things are composed of cells,; cells are the smallest unit (structure) of living things 	differentiate between the purpose of mitosis and meiosis.		structures and their functions.
that can perform the processes (functions) necessary for life,; and living cells come only from other living cells. (Although it is appropriate for students at this level to understand the three points of the original cell theory, an exploration of the revised cell theory should be reserved for high school Biology.)	 design an investigation from a testable question related to animal and plant cells. The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. An example of such a question is: 		" <u>Dead Centers</u> ", The student will make a wet mount slide of cork cells and observe both unstained and stained
 The development of the original cell theory can be attributed to the major discoveries of many notable scientists. The development of the cell theory has been dependent upon improvements in the microscope and microscopic techniques throughout 	"Do onion cells vary in shape or structure depending on where they are found in the plant?" Skills		cork cells. "Antony van Leeuwenhoek", a biography of van
 the last four centuries. Continuing advances in microscopes and instrumentation have increased the understanding of cell organelles and their functions. Many of these organelles can now be observed with a microscope 	 d) models and simulations are constructed and used to illustrate and explain phenomena 		Leeuwenhoek.

MCPS Curriculum Guide	Revised Oct. 2012
(light, electron).	"Cell Theory" & "Cells:
• Cells go through a life cycle known as the cell cycle.	The Basis of Life", [
The phases of the cell cycle are interphase, mitosis, and cytokinesis. (Although it is appropriate for	teacher reference pages]
students at this level to learn to recognize the stages	
of the cell cycle and mitosis, an exploration of the	Enhanced Scope and
individual stages of meiosis may be reserved for high	Sequence Plus
school Biology.)	Plant and Animal Cells
 The purpose of mitosis is to produce new cells for growth and repair that are identical to the parent cell. 	Cell Division
The purpose of meiosis is to produce reproductive	
(sex) cells that carry half the genetic material of the	
parent.	

Cells

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
	 Content Knowledge and Skills In order to meet this standard, it is expected that students will: explain the relationship among cells, tissue, organs, and organs systems. differentiate between unicellular organisms and multicellular organisms and multicellular organisms and name common examples of each. compare and contrast how unicellular and multicellular organisms perform various life functions. This includes the application of knowledge about systems in organisms. explain the role that each life function serves for an organism: ingestion, digestion and removal of waste, stimulus response, growth and repair, gas exchange, and reproduction. explain that there is a specific range or continuum of conditions that will meet the needs of organisms. model how materials move into and out of cells in the processes of osmosis, diffusion, and selective permeability. This includes creating and interpreting three-dimensional models and/or illustrations demonstrating the 		Supporting Materials AIMS Magnificent Microworld Adventures. "A Complete Package", The student will observe upper and lower epidermis [skin] of a plant leaf and observe how cell structures carry out specific functions. "The Green Machine II", The student will observe when salt water solution is added to an Elodea leaf, the internal structures of each leaf cell changes due to water leaving the cell. "The Cell as a Factory", The student will build a model of a cell to learn its structures and their functions. "Blood", The student will observe professionally prepared slides of human blood.
 waste breakdown and removal, growth and division, and cellular transport. Osmosis is the passive transport of water molecules across a cell membrane. 	processes involved. Students should be able to analyze the components of these models and diagrams and communicate their observations and	Trees of Life – Plants [95] Explore biological molecules that are important in plants.	" <u>Making a Hay Infusion</u> ", The student will make a hay infusion to observe emergence and growth of protozoa over time.
 Diffusion is the passive transport of substances other than water across a cell membrane. Cell membranes are selectively permeable to various substances. (A discussion of facilitated diffusion, tonicity, and active transport should be reserved for high school Biology.) Living things carry out life processes 	 conclusions. create plausible hypotheses about the effects that changes in available materials might have on particular life processes in plants and in animals. conduct basic investigations related to understanding cellular organization, with emphasis on observations of cells 	(Model) <u>Models/Simulations:</u> <u>Diffusion and Osmosis 5:</u> <u>Dynamic Equilibrium</u> <u>Diffusion and Osmosis 6:</u> <u>Concentration and Breathing</u> (SAM)	" <u>The Pickle Jar Aquarium</u> ", The student will observe protozoa and freshwater plants in their own aquarium. " <u>Dropping in on Protozoa</u> ", The student will observe protozoa in pond water.

including ingestion, digestion and removal of waste, stimulus response, growth and repair, gas exchange, and reproduction. and tissue. This investigation should focus on the skills developed in LS.1. Diffusion and Osmosis 12: Osmosis Our Wonderful World • Numerous factors can strongly influence the life processes of organisms. Diffusion and Osmosis 2: A Simple Example of Diffusion of Particles Diffusion and Osmosis 4: Diffusion and Osmosis 4: Diffusion and Osmosis 1: Riding An Atom Diffusion and Osmosis 1: Riding An Atom "Transpiration", The student will observe the transpiration and water movement that occurs in plant leaves.
Diffusion In and Out of the Cell: Water, Oxygen and CO- Osmosis: Keeping an Ion BalanceEnhanced Scope and Sequence Plus Levels of Cellular Organization Osmosis, Diffusion, and ActiveThe Butterfly Effect ModelSimple Osmosis with One PoreThe Butterfly EffectDiffusion and Osmosis 3: Net Flow From High To Low (SAM)Diffusion and Osmosis 7: Evolving Efficient Breathing (SAM)

MCPS Curriculum Guide		Revised Oct. 2012
	Diffusion and Osmosis 9: The Porous Membrane	
	Diffusion And Osmosis 10: Which Atoms Or Molecules Need Pores?	
	Diffusion and Osmosis 13: Making An Electric Potential	
	Diffusion and Osmosis 11: Exploring An Aquapore All of the above models demonstrate examples of diffusion and let the user manipulate the model to reach equilibrium.	
	Diffusion and Osmosis 14: Active Transport	
	Explore the relationship between ion concentration, ATP concentration, and the formation of electrical energy below. To start, use the pull down menus below the model to select a concentration for	
	ATP and for calcium ions.	

Photosynthesis

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.5 The student will investigate and understand the basic physical and chemical processes of photosynthesis and its importance to plant and animal life. Key concepts	 In order to meet this standard, it is expected that students will: describe the process of photosynthesis in terms of raw materials and products generated. 	Activities: Leaf Photosynthesis [41] Explore leaf photosynthesis and the macroscopic outcome of the photosynthetic reaction. (Model: Netlogo)	AIMS <u>Magnificent Microworld</u> <u>Adventures</u> "Algae -The Food Factory",
 include: a) energy transfer between sunlight and chlorophyll; b) transformation of water and carbon dioxide into sugar and oxygen; and c) photosynthesis as the foundation of virtually all food webs. 	 identify and describe the cellular organelles involved in the process of photosynthesis. explain how organisms utilize the energy stored from the products of photosynthesis. compare and contrast the processes of photosynthesis and cellular respiration. 	Transpiration [40] Investigate the process of transpiration in living plants. (Sensor: Relative Humidity, Temperature)	The student will study the characteristics of several different types of algae. <u>The Budding Botanist</u> "PhotosyntheSiS", The student will study oxygen produced by photosynthesis.
 The concepts developed in this standard include the following: Chlorophyll is a chemical in chloroplasts that can absorb or trap light energy. Photosynthesis is the necessary life process that transforms light energy into chemical energy. It involves a series of chemical reactions in which the light energy is used to change raw materials (carbon dioxide and water) into products (sugar and oxygen). The energy is stored in the chemical bonds of the glucose (sugar) molecules. Plants perform cellular respiration as well as photosynthesis. Plants convert the sugars they produce into other raw materials that are used by plants and animals for growth, repair, and energy needs. Energy is a basic need of all living things. Photosynthesizing organisms obtain their energy from the sun and are often called producers because of their ability to produce glucose (sugar). 	 relate the importance of photosynthesis to the role of producers as the foundation of food webs. design an investigation from a testable question related to photosynthesis. The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. Skills h) data are organized, communicated through graphical representation, interpreted, and used to make predictions 	Models/Simulations: Cellular Respiration 6: Exploring the Electron Transport Chain The Electron Transport Chain uses high chemical energy molecules made in the Krebs Cycle. Students can explore how they are used to pump hydrogen ions (protons) to one side of a membrane, where they will later be used to create ATP molecules. Cellular Respiration 7: Disrupting the Electron Transport Chain How do some poisons work? Explore places along the Electron Transport Chain where molecular actions can be blocked. Photosynthesis 1: What is Sunlight? In an introductory model, sunlight is discovered to be made of photons of different wave lengths.	Enhanced Scope and Sequence Plus Photosynthesis and Cellular Respiration The Cycles of Nature

Photosynthesizing organisms are the foundation of virtually all food webs.	Photosynthesis 2: When Light Shines on Leaves Consider how different colored leaves absorb, reflect, and transmit different photons. This model provides a virtual experiment involving a green leaf and a red leaf. A light filter is placed at the right edge of the compartment to control the frequency of light that shines into the compartment.	
	Photosynthesis 3: Meeting Chlorophyll in a Leaf Explore the light-harvesting molecules. The model asks students: Suppose we have separated a leaf into three substances, each of which is known to be composed of one type of molecule. Let's call them Molecule A, B, and C. Our task is to figure out which molecule is responsible for absorbing light.	
	Photosynthesis 4: Photosystems in Chloroplasts Without the light harvesting complex, chlorophyll's ability to capture a photon has no result. Students go beyond the chlorophyll molecule to explore the light-harvesting system that is in turn part of the photosystems inside the chloroplasts.	
	Photosynthesis 6: Designing a Pigment An advanced challenge in which users are encouraged to try to make a specific pigment. The model below shows a molecule	

that can absorb all frequencies of photons. The task is to modify the energy level diagram so that it will absorb photons of any color but blue.	
Cellular Respiration 1: Introduction to the ATP Molecule Explore the structure of ATP, a high energy molecule that is made in almost every cell and is the fuel needed by most biological processes.	
Cellular Respiration 2: Glycolysis and the Production of ATP Explore the steps in the breaking down of glucose, and the use and creation of high energy small molecules that make the reactions "go."	
Cellular Respiration 3: The Role of Enzymes A model system of glycolysis enzymes have on reaction rates.	
Cellular Respiration 4: The Krebs Cycle, Forming Molecules to Make ATP After glucose is broken down into two pyruvate molecules in the cytoplasm, those molecules move into the mitochondria, where energy extraction is continued in the Krebs cycle.	
Model 346: Cellular Respiration 5: The Krebs Cycle and the Electron Transport Chain Discover high energy molecules that will become part of the Electron Transport Chain.	

S Curriculum Guide		Revised Oct. 2012
	Photosynthesis 3a: Photons and	
	the Chlorophyll Molecule	
	Explore the chlorophyll molecule	
	in 3D. Follow the instructions	
	that accompany the chlorophyll	
	molecule.	
	Photosynthesis In A Leaf	
	Observe the process of	
	photosynthesis in a leaf. Here's	
	a movie showing the operation	
	of the model.	
	Photosynthesis In A Leaf	
	Observe photosynthesis in a	
	leaf, showing the specific	
	reactants and products as the	
	chloroplasts are excited by light	
	and then de-excited by making	
	sugar.	

DNA

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.12 The student will investigate and understand that organisms reproduce and	In order to meet this standard, it is expected that students will:	Activities: Genes and Appearance [93] Change the way a dragon looks	Enhanced Scope and Sequence Plus
transmit genetic information to new generations. Key concepts include	 recognize the appearance of DNA as double helix in shape. 	by changing its genes. (Model: Biologica)	DNA Extraction from Strawberries
 a) the structure and role of DNA; b) the function of genes and chromosomes; c) constructs and phonetymes; 	 explain that DNA contains coded instructions that store and pass on genetic information from one generation to the next. 	Meiosis [92] Learn how meiosis (the formation of gametes) and fertilization	Building a DNA Model Passing Traits to Offspring
 c) genotypes and phenotypes; d) characteristics that can and cannot be inherited; 	 explain the necessity of DNA replication for the continuity of life. 	(combining two gametes to form a fertilized zygote) shuffle the alleles that offspring inherit.	
 e) genetic engineering and its applications; and 	 explain the relationship among genes, chromosomes, and alleles. 	(Model: Biologica)	
 f) historical contributions and significance of discoveries related to 	 demonstrate variation within a single genetic trait. 	Trees of Life-Animals [94] Explore biological molecules that	
genetics.	 distinguish between dominant and recessive traits. 	are important to animals. (Model)	
The concepts developed in this standard include the following:	 distinguish between genotype and phenotype. 	<u>Trees of Life – Plants [95]</u> Explore biological molecules that are important in plants. (Model)	
 DNA is a double helix molecule. DNA is a molecule that includes different components — sugars, nitrogenous bases, and phosphates. The arrangement of the nitrogenous bases within the double helix forms a chemical code. 	 use Punnett squares to predict the possible combinations of inherited factors resulting from single trait crosses. differentiate between characteristics that can be inherited and those that cannot be inherited. 	Models/Simulations: Proteins and Nucleic Acids Introducing DNA An interactive model of DNA in 3D. You can explore both the	
 Chromosomes are strands of tightly wound DNA. Genes are sections of a chromosome that carry the code for a particular trait. An allele is an alternate form of a gene. 	 identify aspects of genetic engineering and supply examples of applications. Evaluate the examples for possible controversial aspects. 	components and the different modes of visualizing DNA. DNA to Proteins 3: Modeling	
• The basic laws of Mendelian genetics explain the transmission of most traits that can be inherited from generation to generation.	 describe the contributions of Mendel, Franklin, Watson, and Crick to our basic understanding of genetics. 	Transcription Visualize a 2D version of DNA. The container background is blue, indicating that everything	
• A Punnett square is a model used to predict the possible combinations of inherited factors resulting from single trait crosses. (An investigation of dihybrid crosses, multiple alleles, and incomplete	Skills j) current applications are used to	happens in the aqueous environment of the cell. DNA to Proteins 5: Modeling	
dominance should be reserved for high school Biology.)	reinforce life science concepts.	<u>Transcription And Translation</u> Control both steps in the pathway	

MCPS Curriculum Guide

•

٠

٠

٠

٠

Dominant traits mask the expression (phenotype)	from DNA to protein:	
of recessive traits. Genotype is the specific	DNA to Proteins 6: Working As A	
combination of dominant and recessive gene	Ribosome	
forms.	Work as a ribosome and	
Traits that are expressed through genes can be	translate DNA into amino acids.	
inherited. Characteristics that are acquired through environmental influences, such as injuries		
or practiced skills, cannot be inherited.	DNA to Proteins: Making Mutations	
In genetic engineering, the genetic code is	Use this model to make a	
manipulated to obtain a desired product.	number of mutations:	
Genetic engineering has numerous practical	substitution, silent, frame shift, as	
applications in medicine, agriculture, and biology.	well as stop codons that stop the	
A series of contributions and discoveries led to the	replication process.	
current level of genetic science.	Meiosis Three	
	Manipulate alleles to see an	
	outcome.	
	Biologica Dragon Genetics	
	Manipulate alleles to see an	
	outcome.	
	Tree of Life: DNA and Its Nucleotides	
	A set of visualizations of	
	nucleotides, their chemical	
	formulas and 3D representations,	
	together with 3D DNA for active	
	exploration.	
	Tree of Life: Protein Example -	
	Insulin	
	Visual representations of the	
	protein insulin. It is a dimer, with	
	two interrelated protein chains.	
	Tree of Life Protein Example -	
	Plant Toxin	
	Many plants produce a protein	
	that is toxic to pathogens that	
	might infect it or animals that	
	might eat it. This particular toxin is produced by a cabbage plant.	

Tree of Life: Phospholipids
Explore a phospholipid, a lipid
with a charged end.
Sheep-Mutation
This is a model of a flock of
sheep whose survival depends
on eating grass. The babies
inherit traits from their parents
according to Mendelian genetics.
One can watch the spread of a
mutation and how it depends on
selection pressure.
Sheep-Selection
This is a model of a flock of sheep whose survival depends
on eating grass. The babies
inherit traits from their parents
according to Mendelian genetics.
One can study the effect on the
population of a trait that changes
the energy they get from eating
grass.
DNA to Proteins 1: 3D Model for
Exploration
A versatile model for exploring
DNA, highlighting chains,
nucleotides and hydrogen bonds.
Users can also move among ball
and stick, space filled and
cartoon views of the molecule.
DNA to Proteins 2: The
Nucleotides
A view of DNA emphasizing
nucleotides.
DNA to Proteins 3: Transcription
A model in which users can go
step by step through the
transcription process. Note: The source of mRNA nucleotides is
not shown, but they are usually
not shown, but they are usually

		Revised Oci. 2012
	floating around inside the cell.	
	Protein Structure - Substitution Mutation Replace one nucleotide with another for a substitution mutation. To make a mutation, right-click on a nucleotide. Then choose a mutation from the pop- up menu. (For example, you can change TTT to TCT.)	
	Protein Structure: Silent Mutation Make a single nucleotide mutation in the model above that does not change the sequence of the resulting protein. To make sure the amino acid sequence has not changed, you can synthesize (transcribe and translate) the protein before and after you make the mutation.	
	Protein Structure - Stop Codon Inserting a stop codon into the sequence will cause translation to stop there.	
	PopGen Fish Bowl You can explore the effects of: 1- Small population size (Genetic Drift) 2-Selection 3-Mutation 4- Migration 5-Nonrandom mating Some basic population biology is also demonstrated such as, logistic population growth and the Allee Effect.	
	DNA Polymerase: Making a New DNA Molecule From a Template This is a model of DNA replication.	

Making a Sickle Cell Sequence	
Allele Divergence	
Biologica Pedigree	
Pedigree - Collect Data 1	
Pedigree - Collect Data 3	
Pedigree - Further Investigation	
Pedigree - Collect Data 2	

Evolution

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
 LS.13 The student will investigate and understand that populations of organisms change over time. Key concepts include a) the relationships of mutation, adaptation, natural selection, and extinction; b) evidence of evolution of different species in the fossil record; and c) how environmental influences, as well as genetic variation, can lead to diversity of organisms. The concepts developed in this standard include the following: The mechanisms through which evolution takes place are a related set of processes that include mutation, adaptation, natural selection, and extinction. This results in changes in populations of organisms over time. Mutations are inheritable changes because a mutation is a change in the DNA code. Adaptations are structures, functions, or behaviors that enable a species to survive. Natural selection is the survival and reproduction of the individuals in a population that exhibit the traits that best enable them to survive in their environment. A mutation may result in a favorable change or adaptation in genetic information that improves a species' ability to exist in its environment, or a mutation may result in an unfavorable change that does not improve or impedes a species' ability to exist in its environment. 	 In order to meet this standard, it is expected that students will: interpret data from simulations that demonstrate selection for a trait belonging to species in various environments. describe how changes in the environment can bring about changes in a species (adaptation, extinction) through natural selection. describe and explain how fossils are records of organisms and events in the Earth's history. explain the evidence for evolution from a variety of sources of scientific data. explain how genetic variations in offspring, which lead to variations in successive generations, can result from the same two parents. analyze and evaluate data from investigations on variations within a local population. explain how environmental influences, as well as genetic variation, can lead to diversity of organisms. Skills i. patterns are identified in data and are interpreted and evaluated 	Models/Simulations: Sheep Mutation Mutation in a flock of sheep. Tree of Life: Hemoglobin Hemoglobin, which transports oxygen in higher animals, is an example of a critical protein. The model allows exploration of the globin component. Bug Hunt Camouflage This is a model of natural/artificial selection that shows how a population hunted by a predator can develop camouflaging. For example, in a forest with green leaves, green bugs may emerge as the predominant bug color.	Enhanced Scope and Sequence Plus Owl Family Natural Selection Evidence of Evolution

MCPS Curriculum Guide

• Individuals of a population each exhibit a range of variations in a trait as a result of the variations in their genetic codes. These variations may or may not help them survive and reproduce in their environment.		
• If a species does not include traits that enable it to survive in its environment or to survive changes in the environment, then the species may become extinct.		

Classification

		assification	
VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.4 The student will investigate	In order to meet this standard, it is		AIMS
and understand how	expected that students will:		Critters
organisms can be classified.	 classify organisms based on a 		
Key concepts include	comparison of key physical		"Animal Antics" The student will sort animals into appropriate
a) the distinguishing	features and activities.		classifications in the animal kingdom.
characteristics of	 arrange organisms in a 		
domains of organisms;	hierarchy according to		"Warming Up to Worms", The student will observe and chart worm
b) the distinguishing	similarities and differences in		behavior.
characteristics of	features.		
kingdoms of organisms;	 categorize examples of 		"Portrait of An Average Snail",
c) the distinguishing	organisms as representative		The student will make quantitative and comparative observations of
characteristics of major	of the kingdoms and recognize		garden snails.
animal phyla and plant	that the number of kingdoms		
divisions; and	is subject to change as new		"Inside Out", The student will observe the various parts of a snail
d) the characteristics that	data are collected.		and measure its height, length and mass.
define a species.	 categorize examples of 		
•	organisms as representative		"Now You See Them Now You Don't", The student will determine
The concepts developed in this	of the three domains		how long it takes earthworms to burrow into the ground.
standard include the following:	(Archaea, Bacteria and		
Information about physical	Eukarya) and recognize that		"Slime Trail", Critters The student will determine whether big snails
features and activities is	the number of domains is		or small snails travel faster.
arranged in a hierarchy of	subject to change as new data		
increasing specificity. The levels	are collected.		"The Up or Down Snail", The student will determine rates that snails
in the accepted hierarchy include	 recognize examples of major 		travel on horizontal and vertical surfaces.
domain, kingdom, phylum, class,	animal phyla.		
order, family, genus and species.	 recognize examples of major 		"What's Your Angle?", The student will determine how the angle of a
Current classification systems	plant (divisions).		ramp affects the rate at which a snail pulls a load up a ramp.
now generally recognize the	 recognize scientific names as 		
categorization of organisms into	part of a binomial		"Snail Olympics", The student will compete their snail In four
three domains, Archaea, Bacteria	nomenclature.		Olympic style events.
and Eukarya.			
As living things are constantly	Skills		"Table Manners", The student will simulate food gathering with
being investigated, new attributes	b) a classification system		different "Insect mouths."
(physical and chemical) are	is developed based on		
revealed that affect how	multiple attributes		Magnificent Microworld Adventures
organisms are placed in a			
standard classification system.			"Pickle Jar Aquarium", The student will observe freshwater protozoa
This system is the basis for			and plants.
scientific binomial nomenclature.			
	11		1

MCPS Curriculum Guide	Revised Oct. 2012
Any grouping of organisms into	"Spinning the Tail", The student will make flip books and zoetrops to
domains or kingdoms is based on	model the movement of protozoa.
several factors, including the	
presence or absence of cellular	"Moving in on Protozoa", The student will observe the movement of
structures, such as the nucleus,	protozoa.
mitochondria, or a cell wall;	
whether the organisms exist as	"Algae -The Food Factory", The student will study the characteristics
single cells or are multicellular;	of several different types of algae.
and how the organisms get their	
food. For example, simple,	Enhanced Scene and Sequence Dive
single-celled organisms that are	Enhanced Scope and Sequence Plus
able to survive in extreme	Classification of Organisms
environments are believed to be	Animal Phyla and Plant Divisions
fundamentally different from	Discovery Education Video
other organisms and may be	Discovery Education Video
classified in their own domain	http://app.discoveryeducation.com/player/view/assetGuid/902F8724-
(Archaea). Four different	B78E-4E18-9D24-A5E6B4D743B4
kingdoms of the Eukarya domain	
of organisms are generally	
recognized by scientists today	
(Protista, Fungi, Plants, and	
Animals).	
Some important animal groups	
(phyla) are the cnidarians,	
mollusks, annelids, arthropods,	
echinoderms, and chordates.	
Four important plant groups	
(divisions) are the mosses, ferns,	
conifers, and flowering plants.	
A group of similar-looking	
organisms that can interbreed	
under natural conditions and	
produce offspring that are	
capable of reproduction defines a	
species.	

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
 LS.6 The student will investigate and understand that organisms within an ecosystem are dependent on one another and on nonliving components of the environment. Key concepts include a) the carbon, water, and nitrogen cycles; b) interactions resulting in a flow of energy and matter throughout the system; c) complex relationships within terrestrial, freshwater, and marine ecosystems; and d) energy flow in food webs and energy pyramids. The concepts developed in this standard include the following: Many important elements and compounds cycle through the living and nonliving components of the environment as a chain of events that continuously repeats. Materials are recycled and made available through the action of decomposers. In order to understand how an ecosystem functions, one must understand the concept of a system and be able to envision models of systems. To analyze the interactions resulting in a flow of energy and matter throughout the ecosystem, one must identify the elements of the system and interpret how energy and matter are used by each organism. 	 In order to meet this standard, it is expected that students will: differentiate among key processes in the water, carbon, and nitrogen cycles and relate how organisms, from bacteria and fungi to third-order consumers, function in these cycles. observe and identify common organisms in ecosystems and collect, record, and chart data concerning the interactions of these organisms (from observations and print and electronic resources). classify organisms found in local ecosystems as producers or first-, second-, or third-order consumers. Design and construct models of food webs with these organisms. observe local ecosystems and identify, measure, and classify the living and nonliving components. identify examples of interdependence in terrestrial, freshwater, and marine ecosystems. determine the relationship between a population's position in a food web and its size. apply the concepts of food chains, food webs, and energy pyramids to analyze how energy and matter flow through an ecosystem. design an investigation from a testable question related to food webs. The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. 	Activities: Trees of Life-Animals [94] Explore biological molecules that are important to animals. (Model) Trees of Life – Plants [95] Explore biological molecules that are important in plants. (Model) Models/Simulations: Sheep - Population A Sheep - Population B Sheep - Population C Sheep Selection Sheep Mutation The above models show population dynamics in a herd of sheep. The rancher can remove some sheep each year. Algae Algae moving up and down the water column in response to light and food. Worms Worms-food balance Water Cycle A dynamic display of the water cycle.	Climate change for Middle School Inquiry-based labs to investigate the carbon cycle.Assessment Access - Login: eliteacher Password: 87dja92 AIMS Magnificent Microworld Adventures "Life in Glass Houses", The student will establish a protozoan community in a glass eyedropper and observe changes in the community over an extended period of lime. "Pickle Jar Aquarium", The student will observe freshwater protozoa and plants in their own aquarium. Critters "Brine Shrimp", The student will observe and study brine shrimp as they hatch and grow. "Worm Home", The student will observe earthworms in their "home environment". Our Wonderful World "On Living Pond", The student will observe types of organisms that might be found in a freshwater pond. Enhanced Scope and Sequence Plus Freshwater Food Chains Go with the Flow

MCPS Curriculum Guide		Revised Oct. 2012
 MCPS Curriculum Guide This energy flow can be modeled through relationships expressed in food webs. The amount of energy available to each successive trophic level (producer, first-order consumer, second-order consumer, third-order consumer) decreases. This can be modeled through an energy pyramid, in which the producers provide the broad 		Revised Oct. 2012
base that supports the other interactions in the system.		

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials		
LS.7 The student will investigate and understand that interactions exist	In order to meet this standard, it is expected that students will:	Models/Simulations: Sheep Selection 2	AIMS Magnificent Microworld Adventures		
among members of a population. Key concepts include	 interpret, analyze, and evaluate data from systematic studies and experiments interpret, analyze, and evaluate data from year. 	randomly when he	"The Hanging Drop", the student will observe protozoa in the same drop of		
 a) competition, cooperation, social hierarchy, territorial imperative; and 		• Interpret, analyze, and evaluate data from removes some each water	Interpret, analyze, and evaluate data from removes some each water over t	removes some each	removes some each water over time
 b) influence of behavior on a population. 	concerning the interactions among members of a population.				
The concepts developed in this standard include the following:	 determine the relationship between a population's position in a food web and the types of interactions seen among the 				
 Individual members of a population interact with each other. These interactions include competing with each other for basic resources, mates, territory, and cooperating with each other to meet basic needs. 	 individuals of the population. observe and identify populations in ecosystems and collect, record, chart, and interpret data concerning the interactions of these organisms (from 				
• The establishment of a social order in a population may ensure that labor and resources are adequately shared.	 observations and print and electronic resources). categorize behaviors as examples of 				
• The establishment of a territory ensures that members of a population have adequate habitat to provide for basic resources.	categorize behaviors as examples of competition, cooperation, social hierarchy, or territorial imperative.				
Individual behaviors and group behaviors can influence a population.					
• Animals exhibit needs for food, water, gases, shelter and space for which they compete. These needs may often be met in a range of conditions. Too much may be as harmful as too little (e.g., too much food or too little water).					

Seventh Grade Science: Third Trimester Ecosystems

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.8 The student will investigate and understand interactions among populations in a biological community. Key concepts include	In order to meet this standard, it is expected that students will:	Models/Simulations: Rabbits-Grass	AIMS <u>Critters</u>
 a) the relationships among producers, consumers, and decomposers in food webs; b) the relationship between predators and prey; c) competition and cooperation; 	 identify the populations of producers, consumers, and decomposers and describe the roles they play in their communities. 	Rabbits-Grass- Weeds-1 Rabbits-Grass- Weeds-2	"Catch Me If You Can", a food chain game of tag.
d) symbiotic relationships; ande) niches.	 interpret, analyze, and evaluate data from systematic studies and experiments concerning the 	<u>Rabbits-Grass-</u> <u>Weeds-3</u> Hawks and Rabbits	Enhanced Scope and Sequence Plus
The concepts developed in this standard include the following:	interactions of populations in an ecosystem.	(Controllable)	A Salt Marsh Ecosystem Predator-Prey Simulation
Organisms or populations that rely on each other for basic needs form interdependent communities.	 predict the effect of population changes on the food web of a 	Hawks and Rabbits in Changing Environment	Organisms in Symbosis
• Energy resources of a community are shared through the interactions of producers, consumers, and decomposers.	community.generate predictions based on	Open Model, Grass Rabbits and Hawks	
• The interaction between a consumer that hunts for another consumer for food is the predator-prey relationship.	graphically represented data of predator-prey populations.generate predictions based on	<u>(With Hypothesis)</u> Open Model, Grass	
 In a community, populations interact with other populations by exhibiting a variety of behaviors that aid in the survival of the population. 	graphically represented data of competition and cooperation between populations.	Rabbits, Hawks and Foxes (With Hypothesis)	
 Organisms may exist as members of a population; populations interact with other populations in a community. 	 differentiate between the types of symbiosis and explain examples of each. 	<u>Open Model, Grass</u> <u>Rabbits, Hawks and</u> <u>Foxes</u>	
• Populations of one species may compete with populations of other species for resources. Populations of	 infer the niche of organisms from their physical characteristics. 	The above models demonstrate and	
one species may also cooperate with populations of other species for resources.	 design an investigation from a testable question related to 	allow the user to manipulate	
• A symbiotic relationship may exist between two or more organisms of different species when they live and work together.	interactions among populations. The investigation may be a complete experimental design or may focus on	environmental situations that help show an understanding of	
• Symbiotic relationships include mutualism (in which both organisms benefit), commensalism (in which one organism benefits and the other is unaffected), and parasitism (in which one organism benefits and the other is harmed).	systematic observation, description, measurement, and/or data collection and analysis.	predator/prey relationships.	
Each organism fills a specific role or niche in its community.			

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
 LS.9 The student will investigate and understand how organisms adapt to biotic and abiotic factors in an ecosystem. Key concepts include a) differences between ecosystems and biomes; b) characteristics of land, marine, and freshwater ecosystems; and 	 In order to meet this standard, it is expected that students will: differentiate between ecosystems and biomes. recognize and give examples of major biomes: desert, forest, grassland, and tundra. 	Activities: <u>Competition [87]</u> Study the effect of a consumer (rabbits) on two species of producers (grasses and weeds). <u>Models/Simulations:</u> Bug Hunt Camouflage	AIMS <u>Critters</u> "Who's Home on the Biome?" The student will organize plants and animals in different biomes.
c) adaptations that enable organisms to survive within a specific ecosystem.	 compare and contrast the biotic and abiotic characteristics of land, marine, and freshwater ecosystems. 	Peppered Moths The above two models demonstrate specific	Enhanced Scope and Sequence Plus
The concepts developed in this standard include the following:	 analyze and describe how specific adaptations enable organisms to 	adaptations that enable organisms to survive. (S)	Biomes of the World Heat Loss from a Fur-Insulated
 The living organisms within a specific area and their physical environment define an ecosystem. 	survive in a particular ecosystem.design an investigation from a testable	Ant sorting This simulation is based on	Animal A Designed Organism
 Characteristics of land, marine, and freshwater ecosystems vary with respect to biotic and abiotic factors. 	question related to how specific adaptations of organisms allow them to survive in the presence of the biotic and abiotic factors in an ecosystems.	the ability of ants and termites to sort material and align them to piles. This	
• The major terrestrial ecosystems are classified into units called biomes — large regions characterized by certain conditions, including a range of climate and ecological communities adapted to those conditions.	The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis.	leads to the known building behavior of termites and the known ability of ants to sort seeds or corpses. One basic principle in these cases is the phenomenon	
• Organisms have specific structures, functions, and behaviors that enable them to survive the biotic and abiotic conditions of the particular ecosystem in which they live.		called "stigmergy," that means that the erected building itself represents the key stimulus that directs	
• Organisms possess adaptations to both biotic and abiotic factors in their ecosystem that increase their chance of survival.		further building. This way the building itself is simultaneously its own building plan.	

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
 Essential Understandings LS.10 The student will investigate and understand that ecosystems, communities, populations, and organisms are dynamic, change over time, and respond to daily, seasonal, and long-term changes in their environment. Key concepts include a) phototropism, hibernation, and dormancy; b) factors that increase or decrease population size; and c) eutrophication, climate changes, and catastrophic disturbances. The concepts developed in this standard include the following: Organisms may exist as members of a population; populations interact with other populations in a community; and communities together with the physical environment form ecosystems. Changes that affect organisms over time 	 In order to meet this standard, it is expected that students will: relate the responses of organisms to daily, seasonal, or long-term events. differentiate between ecosystems, communities, populations, and organisms. predict the effect of climate change on ecosystems, communities, populations, and organisms. predict the effect of eutrophication on ecosystems, communities, populations, and organisms. predict the effect of eutrophication on ecosystems, communities, populations, and organisms. compare and contrast the factors that increase or decrease population size. classify the various types of changes that occur over time in ecosystems, communities, and organisms, as long term, short term, or seasonal. design an investigation from a testable 	Adopted Materials <u>Models/Simulations:</u> <u>Sheep - Population B</u> <u>Sheep - Population C</u> <u>Sheep Selection</u> The above models show population dynamics in a herd of sheep. The rancher can remove some sheep each year. <u>Climate Change, With</u> <u>Temperature Graph</u> <u>Climate Change</u> <u>Starter, Without Graph</u> <u>Climate Change</u> <u>Starter, Without Graph</u> <u>Climate Change</u> <u>(TELS)</u> The above models include basic factors in climate change, including greenhouse gases, clouds, incoming sunlight and	AIMS Magnificent Microworld Adventures "Life in Glass Houses", The student will establish a protozoan community in a glass eyedropper and observe changes in the community over an extended period of time. "The Pickle Jar Aquarium", The student will observe protozoa and freshwater plants in their own aquarium. <u>Critters</u> "Missing Moths", The student will hunt for moths, testing the success of their camouflage. <u>Our Wonderful World</u> "Predator Versus Prey", The student
 Changes that affect organisms over time may be daily, seasonal, or long-term. Plants may respond to light by growing toward it or away from it, a behavior known as phototropism. Animals may respond to cold conditions with a period of lowered metabolism, a behavior known as hibernation. Organisms may respond to adverse conditions with a period of lowered or suspended metabolism, a behavior known as dormancy. A variety of environmental factors may cause the size of a population to increase or decrease. (This requires students to brainstorm examples of factors and predict the possible effects.) 	 design an investigation from a testable question related to change over time in ecosystems, communities, populations, or organisms. The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection and analysis. analyze and critique the experimental design of basic investigations related to change over time in ecosystems, communities, populations, and organisms. 	incoming sunlight and outgoing infrared. Greenhouse Gases Greenhouse Gases in space model. PopGen Fish Bowl PopGen Fishbowl is an agent-based population genetics simulation. The program contains the tools to conduct virtual experiments violating all the assumptions of Hardy-Weinberg theory.	ases ed.will investigate the importance of protective coloring.ases ases in"Insect Lawn Jumpers", The student will observe a grasshopper's movement.Bowl owl is an etics"Now You See It, Now You Don't", The student will study the importance of protective coloring.etics e ins the ct virtual olating tions ofFinding Your Bearings "Country Crush", The student will compare the density of the most populated countries in the world.

Long-term changes may affect entire communities and ecosystems. Such large-		<u>Five Flowerpots, One</u> <u>Plant</u>	Enhanced Scope and Sequence Plus
scale changes include the addition of excess nutrients to the system (eutrophication), which alters environmental balance; dramatic changes in climate; and catastrophic events, such as fire, drought, flood, and earthquakes.		<u>Five Flowerpots, Three</u> <u>Plants</u>	A-Mazing Plants Changes in Ecosystems
		Three Flowerpots with Variation	
		Plant Variation with Mountains	
		Five Flower Pots with Water	
		Field Of Flowers with Water	
		Five Flowerpots, Three Plants with Graph	
		Field with Three Plants, No Variation	
		Field with One Plant, Variation The above models lack	
		description but could be used to manipulate	
		the environment and studying the	
		germination rate of seeds. These models	
		should be used by Teachers!	
		<u>Single Rabbit</u> (Controllable)	
		Rabbit Population (Controllable)	
		Rabbit Variation: Feeding	
		The above models lack description but could	
		be used to manipulate the amount of food and	
		rabbits in an environment.	

VA Standards of Learning (SOL) Essential Understandings	Content Knowledge and Skills	State and MCPS Adopted Materials	Supporting Materials
LS.11 The student will investigate and understand the relationships between ecosystem dynamics and human	In order to meet this standard, it is expected that students will:	Activities: Build a Greenhouse [84] Build your own	AIMS Finding Your Bearings
activity. Key concepts include a) food production and harvest; b) change in habitat size, quality, or structure;	 identify examples of ecosystem dynamics. describe the relationship between human food harvest and the ecosystem. 	greenhouse and explore how to regulate the temperature. (Sensors: Temperature, Light)	"Economically Speaking", The student will infer and draw conclusions about the economy of a country based on its physical features.
 c) change in species competition; d) population disturbances and factors that threaten or enhance 	 debate the pros and cons of human land use versus ecosystem stability. 	<u>Greenhouse Light and</u> Temperature [85]	<u>Critters</u>
species survival; and e) environmental issues.	 compare and contrast population disturbances that threaten and those that enhances apprice survival 	Build a model greenhouse and explore light and temperature	"Who's Home on the Biome?", The student will compare animals and plants in different biomes
 The concepts developed in this standard include the following: Ecosystems are dynamic systems. Humans are a natural part of the ecosystem. Humans 	 that enhance species survival. describe ways that human interaction has altered habitats positively and negatively. 	levels over the course of an artificial day. (Sensors: Light, Temperature)	"Who's Home on the Biome ?", The student will compare plants and animals in different biomes.
 use the ecosystem to meet their basic needs, such as to obtain food. Human interaction can directly alter habitat size, the quality of available resources in a habitat, and the structure of habitat components. Such interactions can be positive and/or negative. 	 observe the effect of human interaction in local ecosystems and collect, record, chart, and interpret data concerning the effect of interaction (from observations and print and electronic resources). 	Model/Simulations: Sheep - Population C Model to show population dynamics in a herd of sheep. The rancher can	Finding Your Bearings "Global Gains", The student will graph worldwide population changes. "Up and Down Towns", The student
 Human input can disturb the balance of populations that occur in a stable ecosystem. These disturbances may lead to a decrease or increase in a population. Since populations in an ecosystem are interdependent, these disturbances have a ripple effect throughout the ecosystem. 	 design an investigation from a testable question related to the relationships between ecosystem dynamics and human activity. The investigation may be a complete experimental design or may focus on systematic observation, description, measurement, and/or data collection 	remove some sheep each year. <u>Climate Change, With</u> <u>Temperature Graph</u> A model of energy balance in the atmosphere. It includes	will gather and graph historical as well as current population data for their own town. "People 'Plosion", The student will examine four decades of population
• The interaction of humans with the dynamic ecosystem may lead to issues of concern for continued ecosystem health in areas such	 and analysis. analyze and critique the experimental design of basic investigations related to the relationships have an analysis. 	data plot. To slow the model, pull the top slider to the left.	data of the world's most populated countries and project their future growth.
as water supply, air quality, energy production, and waste management.	to the relationships between ecosystem dynamics and human activity.	Climate Change Starter, Without Graph This model includes basic factors in climate change, including greenhouse	"Global Gains", The student will construct a bar graph along a time line axis showing the increments when the world population has doubled and will predict when it will double again.

	Revised Oct. 2012
gases, clouds, incoming	
sunlight and outgoing	Water Precious Water
infrared.	
	"Mini Water Treatment Simulation",
Climate Change	The student will simulate the steps in
This is a basic	the water treatment process.
atmospheric greenhouse	
effect model, showing the	"Help Save the Birds", The student will
effect of radiation,	devise a system to filter dirty water.
greenhouse gases	
(Gases), clouds and	
albedo on temperature of	Enhanced Scope and Sequence
the earth.	Plus
Greenhouse Gases	Ecosystem Dynamics
Greenhouse Gases in	
space model.	
Wolf Sheep Predation	
(oversized)	
This model allows the	
user to manipulate the	
amount of sheep and wolf	
population to	
demonstrate a	
predator/prey	
relationship.	
relationship.	